Faculty Submitting: Siobhan Toal
Specify here whether "Pre" or "End" of Unit and the Unit \#: Pre Unit 11

	Which of the following is true: Correct The rate that B is consumed is twice the rate that A is consumed Wrong The rate of that A is consumed twice the rate of consumption of B The rate that A and B are consumed is constant over time The rate that C is produced is twice the rate that B is consumed
Read More	https://openstax.org/books/chemistry-2e/pages/12-1-chemical-reaction-rates
$\begin{gathered} \text { Unit 11_ } \\ \text { Question } 3 \end{gathered}$	Question Type: Multiple Answers/Checkboxes
a	Which of the following would typically increase reactant rate in forward direction (towards product formation)? Correct Answers: Increasing reactant concentration Increasing temperature Breaking down solid into powder Addition of effective catalyst Wrong Answer Increasing Product Concentration
b	Which of the following would not typically increase reactant rate in forward direction (towards product formation)? Correct Answers: Increasing Product Concentration Wrong Answer Increasing reactant concentration Increasing temperature Breaking down solid into powder Addition of effective catalyst
Read More	https://openstax.org/books/chemistry-2e/pages/12-1-chemical-reaction-rates
$\begin{gathered} \text { Unit 11_- } \\ \text { Question } 4 \end{gathered}$	Question Type: Multiple Drop Downs Given the following rate law, the rate constant for the reaction is [drop 1], the order with respect to reactant A is [drop 2] and the order with respect to B is [drop 3] rate $=0.11 \mathrm{M}^{-2} \mathrm{~s}^{-1}[A]^{1}[B]^{2}$ Drop 1

	$0.11 \mathrm{M}^{-2} \mathrm{~s}^{-1}$ Drop 2 1 Drop 3 2
Read More	https://openstax.org/books/chemistry-2e/pages/12-1-chemical-reaction-rates
$\begin{gathered} \hline \text { Unit 11_ } \\ \text { Question } 5 \end{gathered}$	Question Type: Multiple Choice
	Question Text: Given the following rate law, what can be said about the rate of reaction $\text { rate }=0.11 \mathrm{M}^{-2} \mathrm{~s}^{-1}[A]^{1}[B]^{2}$ Correct Answer: the rate of reaction depends more on the concentration of B then A Wrong Answers: the rate of reaction depends more on the concentration of A then B the rate of reaction depends equally on the concentration of A and B the rate of reaction is independent of A and B concentrations
Read More	https://openstax.org/books/chemistry-2e/pages/12-3-rate-laws
Unit 11_ Question 6	Question Type: Multiple Choice
a	Question Text: Doubling the concentration of a reactant increases the rate of a reaction four times. With this knowledge, answer the following questions: What is the order of the reaction with respect to that reactant? Correct Answer:2 Wrong Answers 0 1 4
b	Question Text: Doubling the concentration of a reactant doubles the rate of a reaction. With this knowledge, answer the following questions: What is the order of the reaction with respect to that reactant?

	Correct Answer: 1 Wrong Answers 0 2 c 4
Question Text: Doubling the concentration of a reactant has no effect on the rate of a reaction. With this knowledge, answer the following questions: What is the order of the reaction with respect to that reactant? Correct Answer: 0 Wrong Answers 1 2 Unit 11_-	
Question $\mathbf{7}$	Question Text: According to the Arrhenius equation and collision theory, which factor(s) increase rate of a reaction. Increasing temperature Decreasing activation energy Ea Adding a catalyst Increasing the number of successful collisions (all correct)
Read More	https://openstax.org/books/chemistry-2e/pages/12-5-collision-theory

